National Exams December 2019

16-Mex-A2, Circuits and Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK EXAM. An approved Casio or Sharp model calculator is permitted.
- 3. This exam has two parts Part A Circuits and Part B Electronics. Answer either 3 questions from Part A and two questions from Part B or 2 questions from Part A and 3 questions from Part B a total of 5 questions answered. Indicate in the front page of your answer book which questions you want to be marked.
- 4. Please indicate which part the question you are answering is from ether Part A or Part B. Start each new question on a new page and number and part number e.g. Q4(a).
- 5. For the Part B Electronics part of the exam in schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise. Also, unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 6. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.
- 7. For the Part A Circuits part of the exam some useful equations and transforms are provided.
- 8. All questions are of equal value. Part Marks will be given for right procedures.

16-MEX-A2

PART A

CIRCUITS

ANSWER A MAXIUM OF 3 QUESTIONS FROM THIS PART A SECTION AND TWO QUESTIONS FROM THE PART B SECTION

OR

ANSWER 2 QUESTIONS FROM THIS PART A SECTION AND 3 QUESTIONS FROM THE PART B SECTION

Q1: For the circuit shown in Figure-1,

- (a) Calculate the equivalent resistance of the circuit , RAB at the terminals A and B. [10]
- (b) When 50V dc source is switched at terminals A-B, solve for the voltage V_1 at the location shown. [10]

Figure-1

Q2: In the circuit shown in Figure-2,

(a) Write the node voltage equations for $V_1\,,\!V_2\,,\!V_3$ and V_4 .

[10]

(b) Solve the node voltages.

[10]

Figure-2

Q3: In Figure-3, the switch was initially closed for a long time. At t = 0, it is opened.

Calculate (i) $v_c(0+)$, $\frac{\text{d}v_c}{\text{d}t}$ (0+), $i_c(0+)$ and $v_c(\infty)$

[4+4+2+2]

(ii) $v_c(t)$ when $t \ge 0$

[8]

Figure-3

- Q4: (a) Thevenize (find V_{th} and Z_{th}) at terminals A –B of the circuit shown in Figure-4. [6+6]
 - (c) Calculate Z_{load} , to be connected across the terminals A and B for maximum power dissipation in Z_{load} . [2]
 - (b) Calculate this P_{max} , maximum possible power dissipation in Z_{load} .

[6]

Figure-4

16-Mex-A2-Dec 2019

Q5: In Figure-5, solve the voltage across the capacitor, V_o(t) by Superposition Theorem. [20]

Figure-5

- Q6: In the circuit shown in Figure-6, the switch was closed at t=0. Initial voltage at the capacitor and initial current in the inductor are shown in the diagram..
 - (a) Draw the Laplace Transformed circuit at $t \ge 0$.

[10]

(c) Solve V_c(t) by Laplace transform.

[10]

Figure-6

<u>Appendix</u>

Some useful Laplace Transforms:

<u>f(t)</u>	→	<u>F(s)</u>
Ku(t)		K/s
$\partial(t)$		1
t		1/s ²
e ^{-at} u(t)		1 / (s+a)
sin wt .u(t)		$w/(s^2+w^2)$
cos wt . u(t)		$s/(s^2+w^2)$
$e^{-\alpha t} \sin \omega t$		$\frac{\omega}{(s+\alpha)^2+\omega^2}$
$e^{-\alpha t}cos \omega t$		$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$		$s F(s) - f(0^-)$
$\frac{d^2 f(t)}{dt^2}$		$s^2F(s) - s f(0^-) - f^1(0^-)$
$\int_{-\infty}^{t} f(q) dq$		$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

Star - Delta conversion:

$$Z_1 = \frac{Z_b.Z_c}{Z_a + Z_b + Z_c}$$

$$Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$$

$$Z_1 = \frac{Z_b . Z_c}{Z_a + Z_b + Z_c}$$
 $Z_2 = \frac{Z_a . Z_c}{Z_a + Z_b + Z_c}$ $Z_3 = \frac{Z_a . Z_b}{Z_a + Z_b + Z_c}$

$$Z_a = \frac{Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1}{Z_1}$$
 $Z_b = \frac{Z_1 \cdot Z_2 + Z_2 \cdot Z_3 + Z_3 \cdot Z_1}{Z_2}$

$$Z_b = \frac{Z_1. Z_2 + Z_2. Z_3 + Z_3. Z_1}{Z_2}$$

$$Z = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_3}$$

$$x(t) = x(\infty) + [x(0^+) - x(\infty)]e^{-\frac{t}{\tau}} \quad \tau = R \cdot C \qquad \tau = \frac{L}{R}$$

$$Z = R + j(X_L - X_C) = \lfloor Z \rfloor \angle \theta, \quad \theta = tan^{-1} \left[\frac{(X_L - X_C)}{R} \right]$$

$$P = V.I \cos\theta$$
, $Q = V.I \sin\theta$ Power Factor = $\cos\theta$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$
 $Z_L = Z_{th}^*$ $P_{max} = \frac{V_{th(rms)}^2}{4R_{th}} = \frac{V_{mth}^2}{8R_{th}}$

16-MEX-A2

PART B

ELECTRONICS

ANSWER A MAXIUM OF 3 QUESTIONS FROM THIS PART B SECTION AND TWO QUESTIONS FROM THE PART A SECTION

OR

ANSWER 2 QUESTIONS FROM THIS PART B SECTION AND 3 QUESTIONS FROM THE PART A SECTION

QUESTION (1)

Sketch accurately the transfer characteristic (v_O versus v_I) of the following circuit for an input voltage of ± 20 V. Make sure to specify all the break points and slopes. (20 points)

Given:

- 1) All diodes can be represented by a piece-wise linear model.
- 2) The *pn* junction diodes D_1 to D_4 have $V_{D0} = 0.65$ V and $r_D = 20$ Ω .
- 3) The zener diode D_Z , has $V_{Z0} = 8.2 \text{ V}$ and $r_z = 20 \Omega$.
- 4) $R_1 = 1 \text{ k}\Omega$.

QUESTION (2)

The following is a single stage common source amplifier circuit.

Given: $V_{TH} = 1 \text{ V}$, $K = 4 \text{ mA/V}^2$, and $\lambda = 0$

- a) For a supply voltage $V_{DD} = 15$ V, design the bias circuit such that $I_D = 0.5$ mA, $V_S = 3.5$ V, and $V_D = 6$ V. Please specify the values for R_{G1} , R_{G2} , R_S and R_D . (10 points)
- b) Assuming that the equivalent input resistance $R_{in} = 1.67 \text{ M}\Omega$, $R_1 = 100 \text{ k}\Omega$, $R_L = 200 \text{ k}\Omega$, determine the overall small signal voltage gain v_1/v_{out} . (10 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

$$i_{DS} = \frac{1}{2} K (v_{GS} - V_{TH})^{2} (1 + \lambda v_{DS})$$

triode region

saturation region

QUESTION (3)

An op amp with a slew rate of 1 V/ μ s and a unity-gain bandwidth, f_t of 1 MHz is connected in the unity-gain follower configuration.

a) What is the largest possible input voltage step for which the output voltage waveform can still produce exponentially rising and falling waveforms?
 (8 points)

Given:

- b) For this input voltage, find the 10% to 90% rise time. (6 points)
- c) If the input step is 10 times larger than the voltage that you have found in part (a), find the new 10% to 90% rise time. (6 points)

Supply Voltage = $\pm 10 \text{ V}$

Useful Formulae:

$$\frac{V_{OUT}}{V_{IN}} = \frac{1}{1 + s/\omega_t}, \quad v_{OUT}(t) = V\left(1 - e^{-\omega_t t}\right)$$

QUESTION (4)

In the following CMOS inverter, the threshold voltages of the n- and p-channel transistors are V_{Tn} and $-|V_{Tp}|$, respectively:

- a) Draw the input to output voltage transfer characteristic (VTC) for this inverter. Express and label clearly all voltage levels on the VTC plot. (20 points)
- b) Indicate the noise margins NM_L and NM_H on the VTC.
- c) Indicate the logic high and low output voltage levels Voh, Vol on the VTC.
- d) Indicate the logic high and low input voltage levels V_{IH} , V_{IL} on the VTC.
- e) Indicate clearly the mode of operation in each region of the VTC.

QUESTION (5)

In the following circuits, assume that the diode is ideal and has a forward voltage drop of 0.7V, and all op amps are ideal and with supply voltages of ± 15 V. Sketch the output waveform for one complete sine wave input cycle. (20 points)

