National Exams December 2015

98-Comp-A1, Electronics

3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
2. This is a OPEN BOOK exam.

Any non-communicating calculator is permitted.
3. FIVE (5) questions constitute a complete exam paper.

The first 5 questions as they appear in the answer book will be marked.
4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. The diode has a voltage drop $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$ in forward bias.
For the circuit shown in Figure 1:
a) Sketch V_{i} and V_{o} as a function of time, indicating peak voltages.
b) Find the maximum and minimum output voltage V_{0}.
c) What is the peak current through R_{1} ?

Figure 2. The diode has a voltage drop $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$ in forward bias.
For the circuit shown in Figure 2:
d)) Sketch the output waveform $V_{o}(t)$ in steady state. Label peak voltages.

Question 2 (20 marks)

Figure 3. $\mathrm{k}_{\mathrm{n}}{ }^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=1 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~W} / \mathrm{L}=10, \mathrm{~V}_{\mathrm{tn}}=1 \mathrm{~V},\left|\mathrm{~V}_{\mathrm{A}}\right|=100 \mathrm{~V}$
For the circuit shown in Figure 3:
a) For $\mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}$ what is the current through Q1?
b) For $V_{i}=2 V$, what is V_{o} ?
c) Draw a small signal equivalent model for the circuit.
d) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

Figure 4.
For the circuit shown in Figure 4:
a) Derive the transfer function $\frac{V o(j \omega)}{V i(j \omega)}$ for the circuit shown in Figure 4, assuming the op-amp is ideal.
b) Sketch the frequency response, indicating 3 dB frequencies for this circuit.
c) If $V_{i}(t)=10 \sin (120 \pi \mathrm{t}) \mathrm{V}$, find $V_{o}(j \omega)$.
d) If $V_{i}(t)=10 \sin (120 \pi \mathrm{t}) \mathrm{V}$, find $V_{o}(t)$.

Question 4(20 marks)

Figure 5. $I=0.2 \mathrm{~mA}, \beta=100, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$.
For the circuit shown in Figure 5:
a) Find the input resistance Ri.
b) Find the output resistance Ro.
c) Find the amplifier transconductance G_{m}.
d) Find the open-circuit voltage gain for the amplifier.

Question 5 (20 marks)

Figure 6. The op-amp saturation voltages are $\pm 12 \mathrm{~V}, \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=\mathrm{R}=100 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$.
For the circuit shown in Figure 6:
a) Explain the operation of this circuit.
b) Sketch the waveforms $V_{c}(t)$ and $V_{o}(t)$.
c) Find an expression for $V_{c}(t)$.
d) Find the frequency of the output signal V_{o}.

Question 6 (20 marks)

Figure 7. $\mathrm{k}_{\mathrm{n}}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{k}_{\mathrm{p}}{ }^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}=1 \mathrm{~V}, \mathrm{C}_{\mathrm{ox}}=1 \mathrm{fF} / \mu \mathrm{m}^{2}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ Gate-drain overlap $\mathrm{C}_{\mathrm{gd}}=0.5 \mathrm{fF} / \mu \mathrm{m}$, drain-body $\mathrm{C}_{\mathrm{db}}=10 \mathrm{fF}$, wiring $\mathrm{C}_{\mathrm{ox}}=5 \mathrm{fF}$.
a) If the minimum gate length for this technology is $1 \mu \mathrm{~m}$, size Q_{N} and Q_{P} to obtain a symmetric transfer characteristic.
b) Evaluate the propagation delay for this inverter driving a second identical inverter.

Figure 8.
For the circuit shown in Figure 8:
c) Determine outputs X and Y for all possible inputs A and $\mathrm{B} . \phi$ is a clock signal.
d) If Q_{1} and Q_{2} are sized as in part a), find a minimum size for Q_{5} and Q_{6} that will ensure X can be pulled down to $\mathrm{V}_{\mathrm{DD}} / 2$ or lower.

Question 7 (20 marks)

Figure 9. $\mathrm{R}_{\mathrm{B}}=20 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=5 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {bias }}=1 \mathrm{~V}$ $\mathrm{V}_{\mathrm{t}}=0.8 \mathrm{~V}, \mathrm{k}^{\prime}=40 \mu \mathrm{~A} / \mathrm{V}^{2}$. Transistor dimensions in $\mu \mathrm{m}$.
a) What is a common name for the circuit shown in Figure 9? Briefly explain how it works.
b) Calculate the drain current for Q_{1} (choose a starting value for the gate voltage and iterate to a solution).
c) If $\mathrm{a}_{3}-\mathrm{a}_{0}$ are connected to V_{DD}, find I_{0}. For each value of $\mathrm{A}_{\text {in }}=0000$ to $\mathrm{A}_{\text {in }}=1111$ determine the output V_{o}.
d) What are the limitations of the application of this circuit?

Marking Scheme

1. 20 marks total (4 parts, 5 marks each)
2. 20 marks total
(4 parts, 5 marks each)
(4 parts, 5 marks each)
3. 20 marks total
(4 parts, 5 marks each)
4. 20 marks total
(4 parts, 5 marks each)
(4 parts, 5 marks each)
5. 20 marks total
(4 parts, 5 marks each)
