National Exams December 2015

98-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is a OPEN BOOK exam. Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper. The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. The diode has a voltage drop $V_D=0.7V$ in forward bias.

For the circuit shown in Figure 1:

a) Sketch V_i and V_o as a function of time, indicating peak voltages.

b) Find the maximum and minimum output voltage $V_{\text{o}}. \label{eq:voltage}$

c) What is the peak current through R_1 ?

Figure 2. The diode has a voltage drop $V_D=0.7V$ in forward bias.

For the circuit shown in Figure 2:

d)) Sketch the output waveform $V_{o}(t)$ in steady state. Label peak voltages.

Question 2 (20 marks)

Figure 3. $k_n' = \mu_n C_{ox} = 1 \text{ mA/V}^2$, W/L=10, $V_{tn} = 1V$, $|V_A| = 100V$

For the circuit shown in Figure 3:

a) For $V_i=2V$ what is the current through Q1?

b) For $V_i=2V$, what is V_o ?

c) Draw a small signal equivalent model for the circuit.

d) What is the small signal AC gain of the circuit?

Question 3 (20 marks)

Figure 4.

For the circuit shown in Figure 4:

- a) Derive the transfer function $\frac{Vo(j\omega)}{Vi(j\omega)}$ for the circuit shown in Figure 4, assuming the op-amp is ideal.
- b) Sketch the frequency response, indicating 3dB frequencies for this circuit.
- c) If $V_i(t)=10\sin(120\pi t)$ V, find $V_o(j\omega)$.
- d) If $V_i(t)=10\sin(120\pi t)$ V, find $V_o(t)$.

Question 4(20 marks)

Figure 5. I=0.2mA, β =100, V_A=100V.

For the circuit shown in Figure 5:

a) Find the input resistance Ri.

b) Find the output resistance Ro.

c) Find the amplifier transconductance G_m .

d) Find the open-circuit voltage gain for the amplifier.

Question 5 (20 marks)

Figure 6. The op-amp saturation voltages are $\pm 12V$, $R_1=10k\Omega$, $R_2=R=100k\Omega$, $C=0.1\mu F$.

For the circuit shown in Figure 6:

- a) Explain the operation of this circuit.
- b) Sketch the waveforms $V_c(t)$ and $V_o(t)$.
- c) Find an expression for $V_c(t)$.
- d) Find the frequency of the output signal $V_{\text{o}}. \label{eq:volume}$

Question 6 (20 marks)

Figure 7. k_n '=50 μ A/V², k_p '=20 μ A/V², V_{tn} =- V_{tp} =1V, C_{ox} =1fF/ μ m², V_{DD} =5V Gate-drain overlap C_{gd} =0.5fF/ μ m, drain-body C_{db} =10fF, wiring C_{ox} =5fF.

- a) If the minimum gate length for this technology is 1 μ m, size Q_N and Q_P to obtain a symmetric transfer characteristic.
- b) Evaluate the propagation delay for this inverter driving a second identical inverter.

Figure 8.

For the circuit shown in Figure 8:

- c) Determine outputs X and Y for all possible inputs A and B. ϕ is a clock signal.
- d) If Q_1 and Q_2 are sized as in part a), find a minimum size for Q_5 and Q_6 that will ensure X can be pulled down to $V_{DD}/2$ or lower.

Question 7 (20 marks)

Figure 9. $R_B=20k\Omega$, $R_F=5k\Omega$, $V_{DD}=5V$, $V_{bias}=1V$ $V_t=0.8V$, k'=40 $\mu A/V^2$. Transistor dimensions in μm .

a) What is a common name for the circuit shown in Figure 9? Briefly explain how it works.

b) Calculate the drain current for Q_1 (choose a starting value for the gate voltage and iterate to a solution).

c) If a_3-a_0 are connected to V_{DD} , find I_o . For each value of $A_{in}=0000$ to $A_{in}=1111$ determine the output V_o .

d) What are the limitations of the application of this circuit?

Marking Scheme

1.	20 marks total	(4 parts, 5 marks each)
2.	20 marks total	(4 parts, 5 marks each)
3.	20 marks total	(4 parts, 5 marks each)
4.	20 marks total	(4 parts, 5 marks each)
5.	20 marks total	(4 parts, 5 marks each)
6.	20 marks total	(4 parts, 5 marks each)
7.	20 marks total	(4 parts, 5 marks each)

а.

98-Comp-A1/Dec2015