National Exams May 2014

04-CHEM-A2, Mechanical and Thermal Operations

3 hours duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an OPEN BOOK EXAM.
- 3. Candidates may use any non-communicating calculator.
- 4. All problems are worth 25 marks. **Two problems** from **each** of sections A and B must be attempted.
- 5. **Only the first two** questions as they appear in the answer book from each section will be marked.
- 6. State all assumptions clearly.
- 7. Useful tables and figures are appended at the end of the paper.

Section A: Mechanical Operations

A1. [25 marks] The flow rate through a 10 cm ID commercial wrought iron pipe is 0.04 m³/s. For the system shown in Fig. 1, determine the difference in elevation, h, between the two reservoirs. The fluid is water at 20°C (density of 998.2 kg/m³ and viscosity of 0.001002 Pa s).

Fig. 1: Pipe system for QA1

Useful information is appended as Tables A1, A2 and Fig. A1.

- A2. [25 marks overall] Mixing is to be carried out in a cylindrical tank that has a diameter of $D_t = 2.0$ m and a height of H = 2.0 m. The tank has four baffles that have a width of J = 0.1 D_t . The impeller is a six-blade disk turbine with a diameter $D_a = D_t/3$, blade length L = 0.25 D_a , and blade width W = 0.2 D_a . The impeller speed is 85 rpm. The liquid in the mixer has the properties of water: $\rho = 1000 \text{ kg/m}^3$ and $\mu = 1.0 \times 10^{-3}$ Pa·s. Useful information is appended as Figure A2 and Table A3.
 - (a) [10 Marks] Calculate the power per unit volume for the mixer.

Now you want to scale up this mixer to one having a diameter of 4.0 m.

- (b) [10 Marks] If you carry out the scale-up on the basis of equal power per unit volume, what power is required from the motor?
- (c) [5 Marks] What speed will the impeller have to be driven at?
- A3. [25 marks] A slurry with 20 wt% solids ($\rho_s = 2,000 \text{ kg/m}^3$) is to be filtered in a rotary drum filter with an area, $A = 3 \text{ m}^2$ operating at an internal pressure of 30 kPa and with 30% of the drum surface submerged in the slurry. The density of the filtrate, $\rho_f = 1,000 \text{ kg/m}^3$ and its viscosity, $\mu = 1 \times 10^{-3} \text{ Pa·s}$. The voidage of the cake is, $\varepsilon = 0.4$, and the specific resistance of the cake, $r = 2 \times 10^{12}/\text{m}^2$. Calculate the rate of production of filtrate when the drum rotates at 0.5 rpm if the filter cake is incompressible and the filter cloth has a resistance equal to that of 1 mm of cake, i.e. L = 1 mm. The rate of filtration is given by:

$$\frac{dV}{dt} = \frac{A^2 \left(-\Delta P\right)}{r \mu v \left[V + \left(LA/v\right)\right]}$$

in which v is the volume of cake deposited by unit volume of filtrate

Section B: Thermal Operations

B1. [25 marks overall] Consider the system shown below. A thin square heater is sandwiched between two composite square walls with a width of 50 cm. The heater emits 6500 W of heat. The edges of the square wall are insulated so that all of the heat is transferred through the walls and radiation effects may be neglected.

Determine:

- (a) [10 marks] The heat flux through the aluminum side of the composite wall.
- (b) [3 Marks] The heat flux through the copper side of the composite wall.
- (c) [10 Marks] The temperatures T_1 to T_6 .
- (d) [2 Marks] What do you notice about the change of *T* in materials with high conductivity *vs.* materials with low conductivity? Is conductivity the only important factor?
- B2. [25 marks] Experimental heat transfer measurements have been made for air flows over a rough plate. For this particular plate, the convective heat transfer effects have been correlated by,

$$Nu_x = 0.04 \,\mathrm{Re}_x^{0.9} \,\mathrm{Pr}^{-1/3}$$

For air flow at 50 m/s and 300 K, determine the shear stress at 1 m from the leading edge of the plate.

Data for air at 300 K is Pr = 0.708, $\rho = 1.1769$ kg/m³ and $\mu = 1.8464 \times 10^{-5}$ m²/s.

B3. [25 marks] A test on a cross-flow water-to-air heat exchanger in which both fluids are unmixed is conducted to determine the overall heat transfer coefficient U_i based on the inner surface area of the tubes. The exchanger has 40 tubes of internal diameter 5 mm and length 0.65 m. Hot water enters the tubes at 90°C at a rate of 36 kg/min and leaves at 65°C. Air flows across the tubes and is heated from 20°C to 40°C. Calculate U_i .

Useful information is appended as Table B1 and Fig. B1.

Table A1: Surface Roughness for Common Pipe materials

Material	Surface Roughness		
	ε (ft)	ε (in)	ε (mm)
Drawn Tubing (brass, lead, glass, plastic etc.)	0.000005	0.00006	0.00152
Commercial Steel or Wrought Iron	0.00015	0.0018	0.0457
Asphalted Cast Iron	0.0004	0.0048	. 0.122
Galvanized Iron	0.0005	0.006	0.152
Cast Iron	0.00085	0.0102	0.259

Table A.2: Equivalent lengths $(L/D)_{eq}$ and loss coefficients (k) for turbulent flow through valves and fittings¹

ype of fitting or valve	Loss coefficient, k	Equivalent length, L/d _o
5° ell, standard ^{a,b,e,g,t}	0.35	16
5° ell, long radius ^b	0.2	_
0° ell, standarda, b, d, g, t, m	0.75	30
long radius ^{a,b,e,g}	0.45	20
square or miter ^m	1.3	57
80° bend, close return ^{a,b,g}	1.5	50
See, std, along run, branch blanked offs	0.4	20
used as ell, entering run ^{d, h}	1.0	60
used as ell, entering branch ^{b,d, h}	1.0	60
branch flowing ^{f,h,l}	1.0	_
Coupling ^{b,g}	0.04	0.1
Jnion ^g	0.04	0.1
Ball valve, orifice to do ratio 0.9, fully open	0.17	13
Gate valve, open ^{a.g.,l}	0.17	13
³ / ₄ open ^p	0.9	35
½ open ^p	4.5	160
1 open ^o	24.0	900
Jiaphragm valve, open"	2.3	
I open ^p	2.6	
½ open ^o	4.3	· ·
1 open ^o	21.0	_
Globe valve, bevel seat, openge.	6.0	340
½ open ^p	9.5	·
Globe valve, composition seat, open	6.0	340
½ open ^p	8.5	_
ilobe valve, plug disk, open	9.0	450
3 open	13.0	
1 open ^o	36.0	_
	112.0	
¼ open ^e Angle valve, open ^{e,g}	2.0	145
Y or blowoff valve, open ^{a.}	3.0	175
Check valve, swing ^{a, g.} ,	2.04	135
disk check valve	10.09	
ball check valve	70.0^{q}	
Foot valve	15.0	420

^{*}This table was compiled from Lapple [L1]: Chemical Engineers' Handbook [P2]; and the Crane Co. [C3]. Excerpted by special permission from Chemical Engineering (May, 1949), copyright © 1968 by McGraw-Hill, New York; from Perry's Chemical Engineers' Handbook, 6th ed., Perry and Green (eds.), McGraw-Hill, New York, 1984; reproduced from Tech. Paper 410. Flow of Fluids, courtesy Crane Co.

^a Flow of Fluids through Valves, Fittings, and Pipe, Tech Paper 410., Crane Co., 1969.

^b Freeman: Experiments upon the Flow of Water in Pipes and Pipe Fittings, American Society of Mechanical Engineers, New York, 1941.

Gibson: Hydraulics and Its Applications, 5th ed., Constable, London, 1952.

d Giesecke and Badgett: Heating, Piping Air Conditioning 4(6): 443 (1932).

¹ From: Brodkey, R.S. and Hershey, H.C. (1988) *Transport Phenomena: A unified approach* McGraw-Hill, NY, Table 10.5, p 435.

Fig. A1: Fanning friction factor as a function of N_{Re} and ε / D^2

² From: Fluid Mechanics for Chemical Engineers, 2^{nd} Ed. by Noel de Nevers (1991) The McGraw-Hill Company Inc.

Fig. A2: Power number vs. Reynolds number for turbines and high-efficiency impellers.

Table A3: Values of K_L and K_T for Baffled Tanks with Four Baffles Having a Width Equal to 10% of the Tank Diameter [cf. MSH Table 9.3]

Type of impeller	K_L	K_T
Propeller, three blades		
Pitch 1.0	41	0.32
Pitch 1.5	55	0.87
Turbine		
Six-blade disk	65	5.75
Six curved blades	70	4.80
Six pitched blades	-	1.63
Four pitched blades	44.5	1.27
Flat paddle, two blades	36.5	1.70
Anchor	300	0.35

Table B1: Specific heat capacity of water

<i>T</i> [°C]	C_P [J/kg·K]	T [°C]	C_P [J/kg·K]
35	4178	70	4190
40	4179	75	4193
45	4180	80	4197
50	4181	85	4201
55	4183	90	4206
60	4185	95	4212
65	4187	100	4217

Fig. B1: LMTD correction factor, F, for a one-pass cross-flow exchanger with both passes unmixed 3

NB. If R > 1, we can evaluate F using PR in place of P and 1/R in place of R.

³ From: Lienhard, JH (1987) A Heat Transfer Textbook 2nd. Ed. Prentice-Hall Inc., NJ, Fig. 3.17, p 100.