National Exams December 2018

17-Comp-A1, Electronics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK exam.

 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.
 The first 5 questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

Marking Scheme

20 marks total (4 parts, 5 marks each)
 20 marks total (4 parts, 5 marks each)

Question 1 (20 marks)

Figure 1. All diodes have a forward voltage drop V_D =0.7V.

The circuit shown in Figure 1 is in steady state:

- a) Sketch V_s and V_o as a function of time, indicating peak voltages.
- b) Sketch V_R, as a function of time, indicating peak voltages.
- c) Which resistor has the largest peak power dissipation? What power rating would you choose for this resistor?
- d) Sketch current I_{s} as a function of time, indicating peak values.

Question 2 (20 marks)

Figure 2. I=500 μ A, k_n '(W/L)=3 k_p '(W/L)=1 mA/V², V_{tn} =| V_{tp} |=1.0V, V_A =80V

For the circuit shown in Figure 2:

- a) Draw a small signal AC equivalent circuit and find the model parameter values.
- b) Find the input and output resistances of the circuit.
- c) Find the open circuit voltage gain for the amplifier.
- d) If the output drives a 50Ω load, what is the voltage gain?

Question 3 (20 marks)

Figure 3. The operational amplifier saturates at \pm 10V. The DC input bias current in each input terminal is 10 μ A.

For the circuit shown in Figure 3:

- a) Find the circuit AC gain.
- b) Sketch the frequency response of the circuit.
- c) Find the 3dB frequencies, bandwidth and passband gain for this circuit.
- d) What is the effect of the input bias current on output voltage offset?

Question 4(20 marks)

Figure 4. I=1mA, $\beta=100$, $V_A=100V$, $V_T=25mV$.

For the circuit shown in Figure 4:

- a) Find V_C , V_B and V_E .
- b) Draw a small signal equivalent circuit and find the model parameter values.
- c) Find the small signal input resistance R_i and output resistance Ro.
- d) Find the open circuit voltage gain for the amplifier and the loaded voltage gain.

Question 5 (20 marks)

Figure 5. R_1 = R_4 = $1k\Omega$, R_2 = R_3 = $10k\Omega$, C_1 = C_2 =1nF For the circuit shown in Figure 5:

- a) Explain operation of the circuit.
- b) Where would you take the circuit output?.
- c) For the component values given, at what frequency would the circuit operate?
- d) Select new component values to provide a duty cycle of 66% at the same operating frequency.

Question 6 (20 marks)

Consider a CMOS technology in which an inverter with a minimum gate length L=0.5 μ m has a symmetric transfer function for NMOS W/L = 1.5 and PMOS W/L =6.

- a) Sketch the transistor level gate schematic for the Boolean function $Y = \overline{(AB + C)D}$.
- b) Specify sizes (W/L) for all transistors in order to achieve current-driving capability equal to that of the basic inverter.
- c) Repeat a) and b) $Y = A\overline{B} + \overline{A}B$.
- d) For the gate in c), find the ratio of maximum to minimum available current to charge and discharge a load.

Question 7 (20 marks)

Figure 6. V_{REF} is a positive reference. The capacitor is initially discharged. R=10k Ω , C=10 μ F, V_{IN} =-2V, V_{REF} =2.5V

- a) For a DC input V_{IN} , sketch $V_x(t)$.
- b) Find the slope of $V_x(t)$.
- c) A counter with a clock of 1MHz stops when V_{OUT} goes high. What is the counter value?
- d) What are the applications and limitations of this circuit?