16-CHEM-A2, UNIT OPERATIONS and SEPARATION PROCESSES ## December 2018 ### 3 hours duration ### **NOTES** - 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made. - 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam. - 3. Candidates may use any non-communicating scientific calculator. - 4. All problems are worth 25 points. At least **two problems** from **each** of parts **A** and **B** must be attempted. - 5. **Only the first two** questions as they appear in the answer book from each section will be marked. - 6. State all assumptions clearly. ### **PART A:** UNIT OPERATIONS A1. A slurry containing 5 kg of water/kg of solids is to be thickened to a sludge containing 1.5 kg of water/kg of solids in a continuous operation. Laboratory tests using five different concentrations of the slurry yielded the following data: | Concentration | Rate of Sedimentation | |----------------------------|-----------------------| | (kg of water/kg of solids) | (mm/s) | | 5.0 | 0.20 | | 4.2 | 0.12 | | 3.7 | 0.094 | | 3.1 | 0.07 | | 2.5 | 0.05 | Calculate the minimum area of a thickener required to effect the separation for a flow of 4788 kg/hr of solids. A2. A liquid flows through two pipes connected in series at a rate of 12,000 kg/hr. The two pipes consist of 100 meters of horizontal smooth-walled 50-mm straight pipe followed by a reducer to 38 mm with 60 meters of horizontal smooth-walled straight pipe. Frictional loss for the reducer amounts to 0.2 velocity heads. Determine the frictional pressure drop across the pipe system. DATA: Viscosity of liquid = $3 \times 10^{-3} \text{ N.s/m}^2$ Density of liquid = 850 kg/m^3 - A3. There is a requirement for the power demand to be kept to a minimum when designing a fluidized bed. A 1-meter diameter fluidized bed is filled with 1800 kg of 2-mm diameter spherical particles to a depth of 1.6 meters. The density of spherical particles is 2100 kg/m³. The fluidizing gas, flowing at a rate of 830 m³/hr, has a density of 1.21 kg/m³ and a viscosity of 1.42 x 10⁻⁵ N.s/m². The Kozeny constant can be taken as 5. - (a) [10 points] Determine the pressure drop over the fluidized bed. - (b) [3 points] Determine the power requirement for flow of gas though the fluidized bed. # **PART B:** SEPARATION PROCESSES - **B1.** A feed solution containing 70 moles of benzene and 30 moles of toluene mixture is fed to a distillation column at a total pressure of 1 atm. One third of the feed is vaporized, and average volatility ratio of the system (α) is 2.5. Calculate the composition of distillate and bottoms using the following: - (a) [13 points] Flash distillation. - (b) [12 points] Differential distillation. **B2.** 1400 kg of granular solid is to be dried under constant drying conditions from a moisture content of 0.2 kg/kg of dry solid to a final moisture content of 0.02 kg/kg of dry solid. The material has an effective area of 6.15 x 10⁻² m²/kg. Calculate the time required for drying based on the following data obtained for the material: | Moisture Content | Rate of Drying | |----------------------|-------------------------| | (kg/kg of dry solid) | (kg/hr.m ²) | | 0.3 | 1.71 | | 0.2 | 1,71 | | 0.14 | 1.71 | | 0.096 | 1.46 | | 0.056 | 1.29 | | 0.042 | 0.88 | | 0.026 | 0.54 | | 0.016 | 0.376 | **B3.** The adsorption of ethane (C₂H₆) on Linde molecular sieve type 5A was studied at 35 °C and the following data was obtained: | Ethane Uptake, in cm ³ (STP)/g | |---| | 0.059 | | 0.318 | | 1.638 | | 3.613 | | 24.236 | | 34.278 | | 38.340 | | 41.779 | | 44.037 | | 45.693 | | | - (a) [20 points] Determine if Langmuir isotherm or Freundlich isotherm can be used to model the data. - (b) [5 points] Calculate the total surface area of the solid. <u>DATA</u>: Avagadro's number = 6.023×10^{23} molecules/mole Density of liquified ethane = 354.9 kg/m^3 18 # The Periodic Table of the Elements | Helium 2 4.00 | Neon
10
Ne
20.18 | Argen
18
Ar
39.95 | Клургоп
3 6
Кг
83.80 | Xenon Xe 131.29 | Radon
86
Rn
(222) | Ununoctium
118
Uuo
(294) | |--|--------------------------------------|--------------------------------------|---|--|------------------------------------|--| | 11 | Fluorine 9 Fluorine 19.00 | Chlorine 17 CI 35.45 | Bromine
35
Br
79.90 | 53
 126.90 | Astaline 85 At (210) | Ununseptium 117 Uus (294?) | | 16 | Oxygen 8 0 16.00 | Sulfur
16
S
32.07 | Selenium
34
Se
78.96 | Tellurium 52 Te 127.60 | Polonium 84 Po (209) | Ununhexium
116
Uuh
(293) | | 15 | Nitrogen 7 N 14.01 | Phosphorus 15 PP 30.97 | Arsenic 33 AS 74.92 | Antimony 51 Sb 121.76 | Bismuth 83 Bi 208.98 | Unupentium
115
Uup
(288) | | 4 | Carbon 6 C C 12.01 | Silicon
14
Si
28.09 | Germanium
32
Ge
72.61 | 50
Sn
118.71 | Pb 207.20 | Ununquadium
114
Uuq
(289) | | د | 5 5 10.81 | Aluminum
13
AI
26.98 | Gallium
31
Ga
69.72 | todium 49 In 114.82 | Thallium 81 TI 204.38 | Unut
113
Uut
(284) | | # | Mass | 12 | Zinc
30
Zn
65.39 | Cd Cd 112.41 | 80
80
Hg
200.59 | Copernicium
112
Cn
(285) | | Atomic # | – Avg. Mass | 1- | Cu
63.55 | Ag
107.87 | сои
79
Au
196.97 | Roentgenium 111 Rg (280) | | tury
• | 29 ← | 10 | Nickel 28 Nickel 58.69 | Pelladium 46 Pd 106.42 | Platinum 78 Pt 195.08 | Damstadtium
110
DS
(281) | | Mercury 80 4 | 200.59 | o | Cobart 27 CO 58.93 | Rhodium 45
Rh
102.91 | 192.22 | Metherium
109
Mt
(276) | | lame h | | | 100
26
Fe
55.85 | Ruthenium 44 Ru 101.07 | Osmium 76 OS 190.23 | Hassium
108
Hs
(270) | | Element na | ĵ | 2 | Mn 54.94 | Technetium 43 TC (98) | Rhenium 75 Re 186.21 | Bohrium
107
Bh
(272) | | E | | ဖ | Chromium 24 Cr 52.00 | Molybdenum
42
Mo
95.94 | Tungsten 74 | Seaborgium
106
Sg
(271) | | netals
Is
I-metal) | | ro | Vanadium 23 V | Neobium
41
Nb
92.91 | Tantalum 73 73 Ta 180.95 | Db (268) | | Alkali metals
Alkaline earth metals
TransItlon metals
Other metals
Metalloids (seml-metal) | Nonmetals
Halogens
Noble gases | 4 | Ttanium 22 Ti 47.88 | Zirconium
40
Zr
91.22 | Hafnium 72 Hf 178.49 | Rutherfordium 104 Rf (267) | | Alka Alka Tran Othe Othe Mets | Non Halc | ო | Scandium 21 SC 44.96 | 39 × × × × × × × × × × × × × × × × × × × | Lutetium 71 Lu 174.97 | 103
Lr
(262) | | | | | | | 57-70
* | 89-102 | | 8 | Beryllium 4 Be 9.01 | Mg
24.31 | Calcium 20 Ca Ca 40.08 | Stronlium 38 SF 87.62 | Benum
56
Ba
137.33 | Radium
88
Ra
(226) | | Hydrogen 1.01 | Li
13
Li
6.94 | Sodium 111 Na 22.99 | Potassium 19 K 39.10 | 37 Rb 85.47 | Cesium 55 CS (732.91 | Francium 87 Fr (223) | | | | | | | | | | *lanthanides | 57 La 138.91 | Cerium
58
Ce
140.12 | Praseodymium 59 Pr 140.91 | Neodymium
60
Nd
144.24 | Promethium 61 Pm (145) | Samarlum
62
Sm
150.36 | Europium
63
Eu
151.97 | Gadolinium
64
Gd
157.25 | Terbium 65 Tb 158.93 | Dysprosium 66 Dy 162.50 | Holmium 67 HO 164.93 | Erbium 68 Er 167.26 | Thullum 69 7 168.93 | Ytterblum 70 Yb 173.04 | |--------------|----------------------|-------------------------------------|----------------------------------|--|-------------------------------|---------------------------------------|---------------------------------------|---|---------------------------------------|-------------------------|----------------------------------|-----------------------------|-----------------------------------|------------------------| | **actinides | Actinium 89 Ac (227) | Thorium 90 Th 232.04 | Protactinium 91 Pa 231.04 | Uranium 92 U U 238.03 | Neptunium 93 Np (237) | Plutonium 94 Pu (244) | Americium
95
Am
(243) | Curium
96
Cm
(247) | Berkelium
97
BK
(247) | Carriomium 98 Cf (251) | Einsteinium
99
ES
(252) | Fermium 100 Fm (257) | Mendelevium
101
Md
(258) | Nobelium 102 No (259) |