16-CHEM-A2, UNIT OPERATIONS and SEPARATION PROCESSES

December 2018

3 hours duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. The examination is an **open book exam.** One textbook of your choice with notations listed on the margins etc., but no loose notes are permitted into the exam.
- 3. Candidates may use any non-communicating scientific calculator.
- 4. All problems are worth 25 points. At least **two problems** from **each** of parts **A** and **B** must be attempted.
- 5. **Only the first two** questions as they appear in the answer book from each section will be marked.
- 6. State all assumptions clearly.

PART A: UNIT OPERATIONS

A1. A slurry containing 5 kg of water/kg of solids is to be thickened to a sludge containing 1.5 kg of water/kg of solids in a continuous operation. Laboratory tests using five different concentrations of the slurry yielded the following data:

Concentration	Rate of Sedimentation
(kg of water/kg of solids)	(mm/s)
5.0	0.20
4.2	0.12
3.7	0.094
3.1	0.07
2.5	0.05

Calculate the minimum area of a thickener required to effect the separation for a flow of 4788 kg/hr of solids.

A2. A liquid flows through two pipes connected in series at a rate of 12,000 kg/hr. The two pipes consist of 100 meters of horizontal smooth-walled 50-mm straight pipe followed by a reducer to 38 mm with 60 meters of horizontal smooth-walled straight pipe. Frictional loss for the reducer amounts to 0.2 velocity heads. Determine the frictional pressure drop across the pipe system.

DATA: Viscosity of liquid = $3 \times 10^{-3} \text{ N.s/m}^2$ Density of liquid = 850 kg/m^3

- A3. There is a requirement for the power demand to be kept to a minimum when designing a fluidized bed. A 1-meter diameter fluidized bed is filled with 1800 kg of 2-mm diameter spherical particles to a depth of 1.6 meters. The density of spherical particles is 2100 kg/m³. The fluidizing gas, flowing at a rate of 830 m³/hr, has a density of 1.21 kg/m³ and a viscosity of 1.42 x 10⁻⁵ N.s/m². The Kozeny constant can be taken as 5.
 - (a) [10 points] Determine the pressure drop over the fluidized bed.
 - (b) [3 points] Determine the power requirement for flow of gas though the fluidized bed.

PART B: SEPARATION PROCESSES

- **B1.** A feed solution containing 70 moles of benzene and 30 moles of toluene mixture is fed to a distillation column at a total pressure of 1 atm. One third of the feed is vaporized, and average volatility ratio of the system (α) is 2.5. Calculate the composition of distillate and bottoms using the following:
 - (a) [13 points] Flash distillation.
 - (b) [12 points] Differential distillation.

B2. 1400 kg of granular solid is to be dried under constant drying conditions from a moisture content of 0.2 kg/kg of dry solid to a final moisture content of 0.02 kg/kg of dry solid. The material has an effective area of 6.15 x 10⁻² m²/kg. Calculate the time required for drying based on the following data obtained for the material:

Moisture Content	Rate of Drying
(kg/kg of dry solid)	(kg/hr.m ²)
0.3	1.71
0.2	1,71
0.14	1.71
0.096	1.46
0.056	1.29
0.042	0.88
0.026	0.54
0.016	0.376

B3. The adsorption of ethane (C₂H₆) on Linde molecular sieve type 5A was studied at 35 °C and the following data was obtained:

Ethane Uptake, in cm ³ (STP)/g
0.059
0.318
1.638
3.613
24.236
34.278
38.340
41.779
44.037
45.693

- (a) [20 points] Determine if Langmuir isotherm or Freundlich isotherm can be used to model the data.
- (b) [5 points] Calculate the total surface area of the solid.

<u>DATA</u>: Avagadro's number = 6.023×10^{23} molecules/mole Density of liquified ethane = 354.9 kg/m^3

18

The Periodic Table of the Elements

Helium 2 4.00	Neon 10 Ne 20.18	Argen 18 Ar 39.95	Клургоп 3 6 Кг 83.80	Xenon Xe 131.29	Radon 86 Rn (222)	Ununoctium 118 Uuo (294)
11	Fluorine 9 Fluorine 19.00	Chlorine 17 CI 35.45	Bromine 35 Br 79.90	53 126.90	Astaline 85 At (210)	Ununseptium 117 Uus (294?)
16	Oxygen 8 0 16.00	Sulfur 16 S 32.07	Selenium 34 Se 78.96	Tellurium 52 Te 127.60	Polonium 84 Po (209)	Ununhexium 116 Uuh (293)
15	Nitrogen 7 N 14.01	Phosphorus 15 PP 30.97	Arsenic 33 AS 74.92	Antimony 51 Sb 121.76	Bismuth 83 Bi 208.98	Unupentium 115 Uup (288)
4	Carbon 6 C C 12.01	Silicon 14 Si 28.09	Germanium 32 Ge 72.61	50 Sn 118.71	Pb 207.20	Ununquadium 114 Uuq (289)
د	5 5 10.81	Aluminum 13 AI 26.98	Gallium 31 Ga 69.72	todium 49 In 114.82	Thallium 81 TI 204.38	Unut 113 Uut (284)
#	Mass	12	Zinc 30 Zn 65.39	Cd Cd 112.41	80 80 Hg 200.59	Copernicium 112 Cn (285)
Atomic #	– Avg. Mass	1-	Cu 63.55	Ag 107.87	сои 79 Au 196.97	Roentgenium 111 Rg (280)
tury •	29 ←	10	Nickel 28 Nickel 58.69	Pelladium 46 Pd 106.42	Platinum 78 Pt 195.08	Damstadtium 110 DS (281)
Mercury 80 4	200.59	o	Cobart 27 CO 58.93	Rhodium 45 Rh 102.91	192.22	Metherium 109 Mt (276)
lame h			100 26 Fe 55.85	Ruthenium 44 Ru 101.07	Osmium 76 OS 190.23	Hassium 108 Hs (270)
Element na	ĵ	2	Mn 54.94	Technetium 43 TC (98)	Rhenium 75 Re 186.21	Bohrium 107 Bh (272)
E		ဖ	Chromium 24 Cr 52.00	Molybdenum 42 Mo 95.94	Tungsten 74	Seaborgium 106 Sg (271)
netals Is I-metal)		ro	Vanadium 23 V	Neobium 41 Nb 92.91	Tantalum 73 73 Ta 180.95	Db (268)
Alkali metals Alkaline earth metals TransItlon metals Other metals Metalloids (seml-metal)	Nonmetals Halogens Noble gases	4	Ttanium 22 Ti 47.88	Zirconium 40 Zr 91.22	Hafnium 72 Hf 178.49	Rutherfordium 104 Rf (267)
Alka Alka Tran Othe Othe Mets	Non Halc	ო	Scandium 21 SC 44.96	39 × × × × × × × × × × × × × × × × × × ×	Lutetium 71 Lu 174.97	103 Lr (262)
					57-70 *	89-102
8	Beryllium 4 Be 9.01	Mg 24.31	Calcium 20 Ca Ca 40.08	Stronlium 38 SF 87.62	Benum 56 Ba 137.33	Radium 88 Ra (226)
Hydrogen 1.01	Li 13 Li 6.94	Sodium 111 Na 22.99	Potassium 19 K 39.10	37 Rb 85.47	Cesium 55 CS (732.91	Francium 87 Fr (223)

*lanthanides	57 La 138.91	Cerium 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarlum 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50	Holmium 67 HO 164.93	Erbium 68 Er 167.26	Thullum 69 7 168.93	Ytterblum 70 Yb 173.04
**actinides	Actinium 89 Ac (227)	Thorium 90 Th 232.04	Protactinium 91 Pa 231.04	Uranium 92 U U 238.03	Neptunium 93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247)	Berkelium 97 BK (247)	Carriomium 98 Cf (251)	Einsteinium 99 ES (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 No (259)

