16-CHEM-A1, PROCESS BALANCES and CHEMICAL THERMODYNAMICS #### **DECEMBER 2017** ### **Three Hours Duration** ### **NOTES:** - 1) If doubt exists as to the interpretation of any question, you are urged to submit a clear statement of any assumptions made along with the answer paper. - 2) Property data required to solve a given problem are provided in the problem statement or are available in the recommended texts. If you are unable to locate the required data, do not let this prevent you from solving the rest of the problem. Even in the absence of property data, you still have the opportunity to provide a solution methodology. - 3) This is an open-book exam. - 4) Any non-communicating calculator is permitted. - 5) The examination is in two parts Part A (Questions 1 to 3): Process Balances Part B (Questions 4 and 6): Chemical Thermodynamics - 6) Answer TWO questions from Part A and TWO questions from Part B. - 7) **FOUR** questions constitute a complete paper. - 8) Each question is of equal value. # PART A: PROCESS MASS and ENERGY BALANCES - 1) A solid material with 15% water by weight is to be dried to 7% water. Fresh air is mixed with recycled air and blown over the solid. Fresh air contains 0.01 kg moisture per kg of dry air and recycled air, which is part of the air leaving the drier, contains 0.1 kg moisture per kg of dry air. Mixed air entering the drier contains 0.03 kg moisture per kg of dry air. Determine the following: - (a) The amount of water removed per 100 kg of wet material fed to the drier. - (b) The amount of dry air in fresh air per 100 kg of wet material. - (c) The amount of dry air in recycled air per 100 kg of wet material. - 2) A gas containing 30% carbon monoxide and 70% nitrogen by volume is burnt with 100% excess air. Both reactants enter at 298 K, and the standard heat of formation of carbon dioxide and carbon monoxide are -393.7 kJ/mol and -110.6 kJ/mol, respectively. Find the theoretical flame temperature required to burn this gas. <u>DATA</u>: Mean specific heat capacity of $CO_2 = 50.1$ J/mol.K Mean specific heat capacity of $O_2 = 33.3$ J/mol.K Mean specific heat capacity of $N_2 = 31.5$ J/mol.K - A feed mixture containing 40% benzene, 30% toluene and 30% xylene by weight is fed to a distillation column. The distillate contains 99.5% benzene and 0.5% toluene. The residue from this unit is fed to another distillation column from which a distillate of composition 97% toluene, 2% benzene and 1% xylene, and a residue of composition 5% toluene and 95% xylene are obtained. Compute the following: - (a) Composition of the three final outputs from the system. - (b) Composition of the intermediate stream. ### PART B: CHEMICAL THERMODYNAMICS - Carbon dioxide gas at 100 °C and 40.53 bar. The critical properties of CO_2 are $T_c = 304.2$ K, $P_c = 73.8$ bar and $V_c = 94$ cm³/mol. Estimate the compressibility factor, residual Gibbs free energy, residual enthalpy and residual entropy for CO_2 at these conditions using the van der Waals equation of state with parameters determine from the following: - (a) T_c and V_c. - (b) T_c and P_c. - 5) At 400 K, the equilibrium for the isomerization reaction A ↔ B is rapidly established. At this temperature, the vapor pressures of A and B are 2 atm and 2.5 atm, respectively. Gaseous A and B are placed in a cylinder fitted with a piston and maintained at 400 K. The cylinder is filled at 1 atm and movement of the piston slowly decreases the volume of the reacting system. At a pressure of 2.2 atm, a dew point is observed. Assuming ideal-liquid solutions, calculate the following: - (a) Equilibrium constant for the reaction $A(g) \leftrightarrow B(g)$. - (b) Equilibrium constant for the reaction A (l) \leftrightarrow B (l). - In order to air condition a house, air from the house at 75 °F is compressed adiabatically, cooled to 100 °F by heat exchange with outside air, and them expanded adiabatically through a turbine. The work from the turbine is applied to the compression step. The air leaves the turbine at 55 °F and enters the house's air-handling ductwork. Assuming air behaves as an ideal gas, calculate a Coefficient of Performance (COP) for this system for the following cases: - a) The compressor and turbine operate reversibly. - b) The compressor and turbine each have an efficiency (η_s) of 70%. The Periodic Table of the Elements 9 | | | | | | | | | | | 1 | | | _ | | | n' | _ | | |---|---|-----------------------|-------------|------------------|-----|-------|-----------------|----|-------|------------------|--------|--------|----------------|---------|--------|----------------------|----------|--------| | Helium
2 | 4.00 | Neon
10 | 20.18 | Argon
18 | Ar | 39.95 | Krypton
36 | ネ | 83.80 | Xenon
54 | Xe | 131.29 | Radon
86 | Ru | (222) | Ununoclium
118 | Ono | (294) | | | 17 | Fluonne | 19.00 | Chlorine 17 | 5 | 35.45 | Bromine
35 | Б | 79.90 | S3 | _ | 126.90 | Astatine 85 | Αţ | (210) | Ununseptium
117 | Uus | (294?) | | | 16 | oxygen
Oxygen | 16.00 | Sulfur
16 | ဟ | 32.07 | Selenium
34 | Se | 78.96 | Tellurium
52 | Те | 127.60 | Polonium
84 | Ро | (508) | Ununhexium
116 | Uuh | (293) | | | 15 | Narogen 7 | 14.01 | Phosphorus
15 | ۵ ا | 30.97 | Arsenic
33 | As | 74.92 | Antimony
51 | Sb | 121.76 | Bismuth
83 | Ö | 208.98 | Ununpentium
115 | Uup | (288) | | | 4 | Carbon O | 12:01 | Silicon
4 | Si | 28.09 | З2
32 | Ge | 72.61 | 50
1 | Sn | 118.71 | Lead
82 | Pb | 207.20 | Ununquadium
114 | Dnd | (289) | | | 13 | Boron | 10.81 | Aluminum
13 | A | 26.98 | Gallium
31 | Ga | 69.72 | hdium
49 | 드 | 114.82 | Thallium
81 | F | 204.38 | Ununtrium
113 | Uut | (284) | | # | | W
W | | - | | 12 | Zinc
30 | Zn | 65.39 | Cadmium
48 | Sq | 112.41 | Mercury
80 | Hg | 200.59 | Copernicium
112 | C | (285) | | Atomic # | | Avg Mass | | | | 7 | Copper
29 | Cu | 63.55 | Silver
47 | Ag | 107.87 | Gold
79 | Αu | | Roentgenium
111 | | | | Sury | | ال م | 7. | | | 10 | Nickel
28 | ź | 58.69 | Palladium
46 | Pd | 106.42 | Platinum
78 | Pt | 195.08 | Darmstadtium
110 | Ds | (281) | | → Mercury | □ | 200,50 | 7 | | | Ø | Cobalt
27 | ၀ | 58.93 | Rhodium
45 | R | 102.91 | mdibm
77 | = | 192.22 | Meltnerium
109 | Mt | (276) | | name | loqui | | | -1 .0 | | 00 | lion
26 | Ъе | 55.85 | Ruthenium
44 | Ru | 101.07 | OSMIUM
76 | os
O | 190.23 | Hassium
108 | H | (270) | | Element na | Syn | | | | | 7 | Manganese
25 | Mn | 54.94 | Technetium 43 | JC | (86) | Rhenium
75 | Re | 186.21 | Bohrium
107 | Bh | (272) | | Ele | | | | | | 9 | Chremium 24 | ပ် | 52.00 | Motybdenum
42 | Mo | 95.94 | Tungsten 74 | > | 183.84 | Seaborglum
106 | Sg | (271) | | metals
als | ni-metal) | | | | | ĸ | Vanadium
23 | > | 50.94 | Niobium
41 | Q
Q | 92.91 | Tamtalum
73 | Ta | 180.95 | Dubnium
105 | | | | Alkali metals
Alkaline earth metals
Transition metals | Other metals
Metalloids (semi-metal) | Nonmetals
Halogens | Noble gases | | | 4 | Titanium
22 | j= | 47.88 | Zirconlum
40 | Zr | 91.22 | Hafhium
72 | Ŧ | 178.49 | Rutherfordium
104 | Æ | (267) | | T A A K | Met | Har | TON TON | | | က | Scandium
21 | Sc | 44.96 | Ущиш | > | 88.91 | Lutetium
71 | Lu | 174.97 | Lawrencium
103 | ۲ | (262) | | | | | | =16 | | | 9- | | | | | | 27 70 | * | | 89-102 | ** | | | | 2 | Beryllium
4 | 9.01 | Magnesium
12 | Mg | 24.31 | Calcium
20 | Ca | 40.08 | Strontium
38 | Sr | 87.62 | Barium
56 | Ва | 137.33 | Radium | Ra | (226) | | Hydrogen | 1.01 | Lithium
3 | 6.94 | Sodium
11 | Na | 22.99 | Potassium
19 | ¥ | 39.10 | Rubidium
37 | Rb | 85.47 | Cesium
55 | S | 132,91 | Francium
87 | Fr | (223) | | 1 | Lanthanum
57 | Cerlum
58 | Preseodymium
59 | Neodутіцт
60 | Promethium
61 | Samarium
62 | Еигоріит
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | Holmium
67 | Erbium
68 | Thulium
69 | Ytterbium
70 | |--------------|-----------------|---------------------|--------------------|------------------------|------------------|----------------|-----------------------|------------------|---------------|-------------------------|----------------------|--------------|---------------|-----------------| | *lanthanides | La | | P | PN | Pm | Sm | Eu | P _S | Tp | Dy | 유 | ш | Ε | Хþ | | | 138.91 | 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | | | | | | | | | | | | | | | | | | Actinium | Thorium | Protactinium | Uranium | Neptunium | Plutonium | Americium | Curium | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium | | | 89 | 06 | 91 | 92 | 93 | 94 | 92 | 96 | 97 | 86 | 6 6 | 100 | 101 | 102 | | **actinides | Ac | 드 | Pa | ⊃ | ď | Pn | Am | Cm | 쓢 | ₽ | Es | Fm | Md | % | | | (227) | 232.04 | 231.04 | 238.03 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | | | | | | | | | | | | | | | | |