National Exams December 2018

17-Phys-A5-B Analog and Digital Electronic Circuits

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Answer all SIX (6) questions.
- 4. Please start each question on a new page and clearly identify the question number and part number, e.g. Q1(a).
- 5. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

Marking Scheme

- 1. (a) 15 marks
- 2. (a) 10 marks; (b) 10 marks;
- 3. (a) 5 marks; (b) 5 marks (c) 5 marks; (d) 5 marks
- 4. (a) 10 marks; (b)5 marks
- 5. (a) 10 marks; (b) 5 marks
- 6. (a) 5 marks; (b) 10 marks

Question1

In the circuit shown in Fig.1 assume V_{BE} = 0.7V, β =100 and neglect Early effect (V_A = ∞) for all transistors.

(a) Calculate the small-signal midband gain $A_M = v_0/v_1$.

Question2

Consider the circuit shown in Fig.2. $R_1=R_2=R_3=1k\Omega,\ R_4=10k\Omega,\ C_1=1\mu F.$

(a) Derive an expression for the voltage gain, v_0/v_i . Assume ideal Op-Amps.

(b) Sketch the Bode plot (dB vs frequency in rad/sec) for the magnitude of the transfer function, V_0/V_1 .

Question3:

Figure 3 shows a MOS amplifier. Consider $I_{\text{bias}} = 2\text{mA}$, the source resistor $R_{\text{sig}} = 10\text{K}\Omega$, the load $C_{\text{L}} = 50\text{fF}$, Assume all the transistors are in active region and they have same aspect ratios $(\frac{w}{L}) = 10$, $\mu_{\text{n}}C_{\text{ox}} = \mu_{\text{p}}C_{\text{ox}} = 100\mu\text{A/V}^2$, $V_{\text{An}} = |V_{\text{Ap}}| = 20\text{V}$, $C_{\text{gs}} = 50\text{fF}$ and $C_{\text{gd}} = 20\text{fF}$ for all the transistors.

- (a) Identify the kind of this MOS amplifier.
- (b) Find the currents ID1 (neglect Early effect only here in (b))
- (c) Calculate the low frequency dc gain $A_v = v_0/v_{sig}$.
- (d) Calculate the 3-dB frequency, f_{H} of this amplifier using open circuit time constants technique.

Question 4

For the amplifier, shown in Fig. 4, it is desired to obtain a precise gain v_0/v_s using feedback. Assume that $g_{m1} = g_{m2} \neq g_{m3}$, $\beta_3 \neq \infty$ (Betta of Q₃), and $r_{o1} = r_{o2} = r_{o3} = \infty$. I_{bias} is an ideal current source. Assume transistors are in active regions.

Fig. 4

(a) Use the methods of feedback analysis to find the expression of the gain vo/vs.

(b) Explain why the base of Q_3 is connected to the drain of M_1 and not to the drain of M_2 .

Question 5

An 8-bit digital-to-analog converter (DAC) shown in Fig 5 has a voltage reference $V_{ref} = 5 \text{ V}$.

Fig. 5

- (a) What is the output voltage V_{out} when the binary input Bin = 10110100.
- (b) Find the least significant bit voltage VLSB.

Question 6

The circuit in Fig.6 shows the pull-down network (PDN) for a static CMOS logic gate that implements the function Y.

- (a) Find the pull-up network (PUN) that corresponds to the PDN and hence complete the CMOS logic circuits.
- (b) What is the Boolean function realized.

