National Exams May 2017

16-Elec-A5, Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- This is a **CLOSED BOOK EXAM**.
 One of two calculators is permitted; any Casio or Sharp approved model.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

The following is a single stage common source amplifier circuit.

Given: $V_{TH} = 1 \text{ V}$, $K = 4 \text{ mA/V}^2$, and $\lambda = 0$

- a) For a supply voltage $V_{DD} = 15$ V, design the bias circuit such that $I_D = 0.5$ mA, $V_S = 3.5$ V, and $V_D = 6$ V. Please specify the values for R_{G1} , R_{G2} , R_S and R_D . (10 points)
- b) Assuming that the equivalent input resistance $R_{in} = 1.67 \text{ M}\Omega$, $R_1 = 100 \text{ k}\Omega$, $R_L = 200 \text{ k}\Omega$, determine the overall small signal voltage gain v_1/v_{out} . (10 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[\left(v_{GS} - V_{TH} \right) v_{DS} - \frac{1}{2} v_{DS}^2 \right] \label{eq:ideal}$$

triode region

$$i_{DS} = \frac{1}{2} K \left(v_{GS} - V_{TH} \right)^2 \left(1 + \lambda v_{DS} \right)$$

saturation region

QUESTION (2)

- a) For the op amp circuit below, sketch accurately the output voltage waveform (as a function of time). Given: $R = R_L = 1 \text{ k}\Omega$, $C = 2 \mu\text{F}$ (16 points)
- b) What is the function of this circuit?

(4 points)

QUESTION (3)

Derive the current gain i_0/i_1 as a function of R_1 , R_2 , and R_3 for the following circuit. (20 points)

QUESTION (4)

For the transistor circuit below, determine V_{B1} , V_{E1} , V_{C1} , V_{B2} , V_{E2} , V_{C2} , I_{C1} , I_{B1} , I_{C2} , and I_{B2} . Given: $R_{B1} = 100 \text{ k}\Omega$, $R_{B2} = 50 \text{ k}\Omega$, $R_{C1} = 5 \text{ k}\Omega$, $R_{E1} = 3 \text{ k}\Omega$, $R_{C2} = 2.7 \text{ k}\Omega$, $R_{E2} = 2 \text{ k}\Omega$. You can assume that the current gain for both transistors is $\beta = 100$. (20 points)

QUESTION (5)

In the following circuits, assume that all the diodes are ideal and has a forward voltage of 0.7 V. Given $RC \gg T$, sketch accurately the output waveforms for each circuit. (20 points)

