National Examination December 2019

18-Env-B5, Industrial & Hazardous Waste Management

Duration: 3 hours

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOX EXAM.

 Any non-communicating calculator is permitted.
- 3. Marks are indicated beside each question for a total of 100 marks.
- 4. Clarity and organization of the answer are important.

Q.1. (5 points)

The two statements below are false. Discuss and explain why these statements are not correct.

- a. In the process of hazardous waste identification, if a substance (A) was not listed in any of the F, K, P, U, and S lists (schedules in O.R. 347), then substance (A) is definitely not hazardous.
- **b.** A substance (B) has to be tested according to TCLP procedure. The solid content is 0.4%. It is required that the substance should be shredded to less than 1 cm, dried and mixed with acetic acid on a ratio of 1:20.

Q.2. (10 points)

Explain the following mechanisms of hazardous waste treatment and give one technology example used for each mechanism.

- Microencapsulation
- Macroencapsulation

Q.3. (10 points)

What is the half-life of a toxic compound for which a laboratory treatability test yielded a first-order degradation rate constant of 0.02 day⁻¹?

- Q.4. You are mixing two waste streams together. Using the data below, calculate:
- a. Cadmium concentration of the mixed material (dry and wet). (5 points)
- b. Is the mixed waste a hazardous waste under TCLP (the TCLP limit for Cadmium is 5 mg/L)? (5 points)

Waste	Mass (kg)	Density (kg/m³)	MC %	Cadmium (mg/kg-wet)
A	40	120	40	370
В	30	175	50	190

Q.5. (10 points)

An open vat 1.25 m x 0.75 m x 0.3 m deep is used to store spent MIBK prior to distilling it for reuse. The temperature is 20 °C. Estimate the rate of volatilization across the surface of the vat. For MIBK, molecular weight = 100 g/mol and vapour pressure = 15 mm Hg.

Q.6. (10 points)

Using the standard electrode potentials for the half reactions, determine the free energy for oxidation of Fe^{2+} by MnO_2 in acid solution. Use the table below to solve your question.

Standard	electrode	potentials	at 25°C
----------	-----------	------------	---------

E ⁰ , voits
+1.36
+1.49
+0.90
+0.75
+0.79
+1.40
+1.34
+2.07
+1.24
+1.78
+0.85

$HO_2^- + 2e + H_2O \rightarrow 3OH^-$	+0.85
$ClO_2 + 2H_2O + 5e^- \rightarrow Cl^- + 4OH^-$	+1.71
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	+1.68
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2^+} + 4H_2O$	+1.49
$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-$	+0.58
$O_{2(g)} + 4H^+ + 4e^- \rightarrow 2H_2O$	+1.23
$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	+0.40
$HBrO + H^+ + 2e^- \rightarrow Br^- + H_2O$	+1,33
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2^+} + 2H_2O$	+1.23
$ClO_2 + e^- \rightarrow ClO_2^-$	+L.15
$Fe(OH)_3 + z^- + 3H^+ \rightarrow Fe^{2^+} + 3H_2O$	+1.06
$Fe^{3^+} + e^- \rightarrow Fe^{2^+}$	+0.77
$ClO_2 + 2H_2O + 5e^- \rightarrow Cl^- + 4OH^-$	+0.76
$ClO_3 + H_2O + 2e^- \rightarrow ClO_2 + 2OH^-$	+0.35
$S_{00} + 2H^{+} + 2e^{-} \rightarrow H_{2}S_{00}$	+0.17
$NO_3^- + H_2O + e^- \rightarrow NO_2^- + 2OH^-$	+0.01
$\frac{1}{4}CO_{2(g)} + H^{+} + e^{-} \rightarrow \frac{1}{24}(glucose) + \frac{1}{4}H_{2}O$	-0.20

Q.7. (10 points)

Determine the amount of carbon required to treat 10,000 gal/day of water contaminated with 600 mg/L xylenes. Assume a required effluent of 10 mg/L and the Freundlich isotherm is $q=51.3C_f^{0.187}$.

Q. 8. (10 points)

Determine the amount of air required for the complete combustion of one tonne of organic solid waste (C_5H_{12}).

Q.9. (15 points)

A 5000-gal bioreactor operates at a biomass concentration of 2000 mg/L, measured as mixed liquor volatile suspended solids (MLVSS) and treats 10,000 gallons per day of liquid waste containing 1000 mg/L of total organic carbon (TOC). The suspended solids are separated in a clarifier following the bioreactor with recycle of separated sludge. The recycle flow rate is 5000 gals/day. Each day, 300 gal of recycle are wasted. The effluent from the clarifier contains 40 mg/L MLVSS. What is the solids retention time? If too short, how can the SRT be increased?

Q.10. (10 points)

Sketch two cross sections in a hazardous waste landfill showing the bottom liner and the final cover.