National Exam, May 2019

16-Elec-A1 Circuits

3 hours duration

NOTES:

- No questions to be asked. If doubt exists as to the interpretation of any question, the
 candidate is urged to submit with the answer paper, a clear statement of any logical
 assumptions made.
- 2. One of two calculators is permitted any Casio or Sharp approved model.
- This is a <u>closed book</u> examination.
- 4. Any <u>five questions</u> constitute a complete paper. Please indicate in the front page of your answer book which questions you want to be marked. <u>If not indicated, only</u> the first five questions as they appear in your answer book will be marked.
- 5. All questions are of equal value. Part marks will be given for right procedures.
- 6. **Some useful equations and transforms** are given in the last page of this question paper.

Q1: For the circuit shown in Figure-1,

- (a) Calculate the equivalent resistance of the circuit, RAB at the terminals A and B. [10]
- (b) Solve for the current I₁ at the location shown. [5]
- (c) Calculate current I_2 through the 3Ω resistance. [5]

Figure-1

Q2: In the circuit shown in Figure-2,

(a) Write the node voltage equations for V_1 , V_2 and V_3 . [10]

(b) Solve the node voltages. [10]

Figure-2

Q3: In Figure-3, the switch was in position-a for a long time. At t = 0, it is moved to Position-b.

Calculate (i)
$$v_c(0+)$$
, $\frac{dv_c}{dt}(0+)$, $i_c(0+)$ and $v_c(\infty)$ [4+4+2+2]

(ii) $v_c(t)$ when $t \ge 0$ [8]

Figure-3

- Q4: (a) The venize (find V_{th} and Z_{th}) at terminals A -B of the circuit shown in Figure-4.
 - (c) Calculate Z_L, to be connected across the terminals A and B for maximum power dissipation in Z_L. [2]
 - (b) Calculate this maximum possible power dissipation in Z_L. [6]

Figure-4

Q5: (a) Write the Node Voltage equations of the following ac circuit, shown in Figure-5.

[9]

[9+2)

(b) Solve the node voltages v1(t), v2(t), v3(t), and find current $i_0(t)$.

Figure-5

Q6: (a) In the circuit shown in Figure-6, the switch was on position-a for a long time. At t = 0, the switch is moved to position-b. Calculate $V_c(0^+)$ and $i_L(0^+)$. [4]

(b) Draw the Laplace Transformed circuit at $t \ge 0$. [8]

(c) Solve $V_c(t)$. [8]

<u>Appendix</u>

Some useful Laplace Transforms:

<u>f(t)</u>	\rightarrow	<u>F(s)</u>
Ku(t)		K/s
$\partial(t)$		1
t		$1/s^2$
e ^{-at} u(t)		1 / (s+a)
sin wt .u(t)		$w/(s^2+w^2)$
cos wt . u(t)		$s / (s^2 + w^2)$
$e^{-lpha t} sin \omega t$		$\frac{\omega}{(s+\alpha)^2+\omega^2}$
e ^{-αt} cos ωt		$\frac{(s+\alpha)}{(s+\alpha)^2+\omega^2}$
$\frac{df(t)}{dt}$		$s F(s) - f(0^-)$
$\frac{d^2 f(t)}{dt^2}$		$s^2F(s) - s f(0^-) - f^1(0^-)$
$\int_{-\infty}^{\prime} f(q) dq$		$\frac{F(s)}{s} + \int_{-\infty}^{0} f(q) dq$

Star - Delta conversion:

$$Z_1 = \frac{Z_b.Z_c}{Z_a + Z_b + Z_c}$$

$$Z_2 = \frac{Z_a \cdot Z_c}{Z_a + Z_b + Z_c}$$

$$Z_1 = \frac{Z_b . Z_c}{Z_a + Z_b + Z_c}$$
 $Z_2 = \frac{Z_a . Z_c}{Z_a + Z_b + Z_c}$ $Z_3 = \frac{Z_a . Z_b}{Z_a + Z_b + Z_c}$

$$Z_a = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_1} \qquad Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2}$$

$$Z_b = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_2}$$

$$Z = \frac{Z_1.Z_2 + Z_2.Z_3 + Z_3.Z_1}{Z_3}$$