National Exams December 2019

04-Bio-A7, Fluid Mechanics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. Four (4) questions constitute a complete exam paper.

 The first four questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. All questions require calculation.

Problem 1.(25 points)

The differential energy equation for incompressible two dimensional through a "Darcy equation" porous medium is approximately

$$\rho c_p \frac{\sigma}{\mu} \frac{\partial p}{\partial x} \frac{\partial T}{\partial x} + \rho c_p \frac{\sigma}{\mu} \frac{\partial p}{\partial y} \frac{\partial T}{\partial y} + k \frac{\partial^2 T}{\partial y^2} = 0$$

Where σ is the permeability of the porous medium and p is the pressure and T is temperature, k is the conductivity, c_p is the specific heat and ρ is the density and μ is the dynamic viscosity. All other symbols have their usual meanings.

- a) What are the appropriate dimensions of σ ?
- b) Non dimensionalize this equation using (L, U, ρ, To) as scaling constants and discuss any dimensionless parameters that arise.

Problem 2. (25 points)

Determine the gage pressure at point A in the below figure, in Pascal's. Is it higher or lower than $P_{atmosphere}?(\gamma_{water}=9790 \text{ N/m}^3, \gamma_{mercury}=133100 \text{ N/m}^3)$

Figure for Question 2.

Problem 3. (25 points)

Two oil tanks are connected by two 9-m-long pipes, as shown in the below figure. Pipe 1 is 5 cm in diameter and is 6 m higher than pipe 2. It is found that the flow rate in pipe 2 is twice as large as the flow in pipe 1.

- (a) What is the diameter of pipe 2?
- (b) Are both pipe flows laminar?
- (c) What is the flow rate in pipe 2 (m³/s)?

Neglect minor losses.(ρ_{oil} =891 Kg/m³, μ_{oil} =0.29 Kg/m.s)

Figure for Question 3.

Problem 4. (25 points)

The parallel galvanized-iron pipe system(ϵ =0.15 mm) of below figure delivers water at $20^{\circ}\text{C}(\rho$ =998 Kg/m³, μ =0.001 Kg/m.s) with a total flow rate of 0.036 m³/s. If the pump is wide open and not running, with a loss coefficient K = 1.5, determine (a) the flow rate in each pipe and (b) the overall pressure drop.

Figure for Question 4