National Exams December 2014

07-Elec-A4, Digital Systems & Computers

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- This is a Closed Book exam.
 Candidates may use one of two calculators, the Casio or Sharp approved models.
- 3. FIVE (5) questions constitute a complete exam.

 Clearly indicate your choice of any five of the six questions given otherwise the first five answers found will be considered your pick.
- 4. All questions are worth 12 points.

 See below for a detailed breakdown of the marking.

Marking Scheme

- 1. (a) 2, (b) 4, (c) 3, (d) 3, total = 12
- 2. (a) 4, (b) 4, (c) 4, total = 12
- 3. (a) 6, (b) 6, total = 12
- 4. (a) 3, (b) 4, (c) 2, (d) 3, total = 12
- 5. (a) 3, (b) 3, (c) 3, (d) 3, total = 12
- 6. (a) 4, (b) 8, total = 12

The number beside each part above indicates the points that part is worth

1.- Consider the function

$$f = A \cdot \overline{C} + A \cdot \overline{B} + \overline{A} \cdot \overline{B} \cdot C$$

- (a) Synthesize the function f as written above using AND, OR and NOT gates.
- (b) Using Boolean algebra put the function f into:
 - i) Its minimized sum-of-products (SoP) form, and
 - ii) Its minimized product-of-sums (PoS) form.
- (c) Check both results obtained in part (b) by using the K-map method.
- (d) Determine if there is a hazard in the minimized functions found above. Justify your answer. If required modify your minimized SoP expression to produce the simplest hazard-free implementation in SoP form.

Note: A list of Boolean identities is attached at the end of exam.

2.- (a) Implement the following Boolean functions by using 8:1 multiplexers:

i)
$$f_1(A, B, C) = \sum m_i(1,4,6)$$
, We are also told that the input combinations

ABC = 011 and ABC = 111 are not of concern for f_1 .

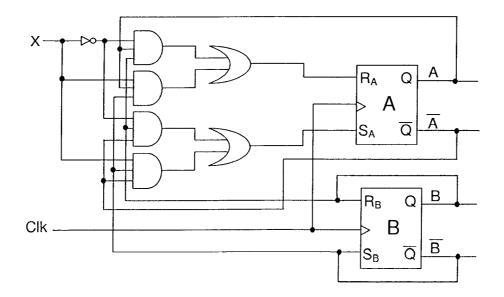
ii)
$$f_2(A, B, C) = \prod M_i(0,1,2,5)$$
.

- (b) Implement the same Boolean functions f_1 & f_2 , given above in part (a), using one 4:1 multiplexer for each function.
- (c) Implement all 3 Boolean functions below by using one 3:8 decoder and three OR gates. Specify all the decoder inputs.

i)
$$f_1(A, B, C) = A \cdot (\overline{B} + C)$$

ii)
$$f_2(A, B, C) = \sum m_i(0,3,4)$$

iii)
$$f_3(A, B, C) = A \cdot B \cdot C + B \cdot \overline{C}$$


- 3.- The following is a truth table of a 3-input, 4-output combinational circuit.
 - (a) Use K-maps to obtain the simplified expressions for A, B, C and D.
 - (b) Implement them using a Programmable Logic Array (PLA) architecture.

Inputs			Outputs			
A	В	С	X	Y	Z	W
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	1	0	0	1
0	1	1	0	1	0	11
1	0	0	0	0	0	0
1	0	1	0	11	1	1
1	1	0	1	11	0	1
1	1	1	1	1	0	0

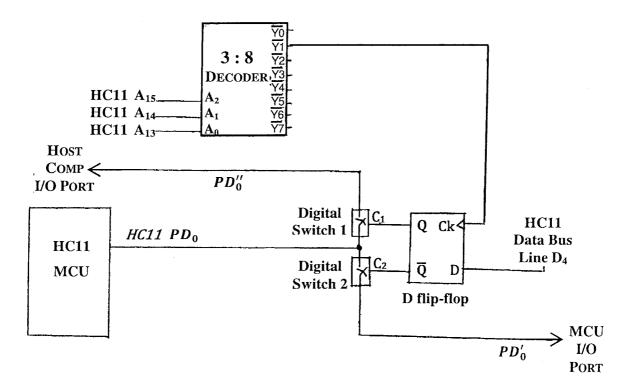
- 4.- The following circuit contains two RS flip-flops.
 - (a) Write the logic expressions for R_A , S_A , R_B and S_B .
 - (b) Obtain the state transition table for the circuit.
 - (c) Sketch the state transition diagram for the circuit.
 - (d) If you were asked to implement this finite state machine (FSM) using JK flip-flops instead of RS flip-flops, would there be any advantage?

 Justify based on the relationship between these flip-flops.

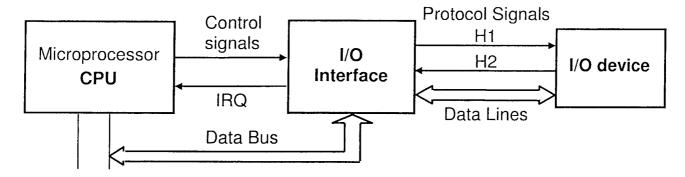
Note: Flip-flop excitation tables are attached at the end of exam.

5.- The diagram below shows the use of a D flip-flop governing two digital switches in order to route line PD₀ of the HC11 microcontroller unit (MCU) to one of two connectors: the HOST computer I/O port or the MCU I/O port connector.

Digital switch i close when control input C_i is at a logic '1' and remain open when C_i is '0'.


HC11 address lines A_{15} - A_{13} are connected to the 3 address inputs of a 3:8 decoder as shown in the figure, the most significant address input of the decoder is A_2 and the least significant is A_0 . Assume the decoder is enabled and towards the end of the execution of each instruction cycle all its active-low outputs \overline{Y}_0 - \overline{Y}_7 go back to their inactive logic '1' state.

Data bus line D₄ of the HC11 is connected to the flip-flop D input.


Which of the following set of instructions will direct HC11 line PD₀ to the HOST computer I/O port, which to the MCU I/O port connector and which will not affect the current routing.

Mark your choice with an X and justify your selection in each case.

(a)	ldaa #\$21, staa \$2B00	[] HOST Comp I/O port,	[] MCU I/O port,	[] No Action
(b)	ldaa #\$FF, staa \$10F0	[] HOST Comp I/O port,	[] MCU I/O port,	[] No Action
(c)	ldaa #\$90, staa \$3000	[] HOST Comp I/O port,	[] MCU I/O port,	[] No Action
(d)	ldaa #\$8D, ldaa \$2FFF	[] HOST Comp I/O port,	MCU I/O port,	[] No Action

6.- The diagram below shows the main elements participating in the parallel I/O of data.

- (a) Mention the two methods used in programming the CPU to communicate with the I/O interface in order to become aware of new available data, or interface readiness, and transfer the data between the two in the corresponding direction.
 - Which of the two methods is more efficient? Explain.
- (b) i. Mention two parallel I/O protocols used for implementing the data exchange between the I/O interface and the external I/O device.
 - ii. Describe the main steps involved in these protocols for the INPUT of data from the I/O device and for the OUTPUT of data to the I/O device, separately.

 Mention which protocol signal H1 or H2 work for signaling VALID DATA in data lines

or ACKNOWLEDGEMENT of data reception in each case.

Excitation Table

Q	Q+	R	S	J	K	T	D	
0	0	X	0	0	X	0	0	
0	1	0	1	1	X	1	1	
1	0	1	0	X	1	1	0	
1	1	0	- X	X	0	0	1	

Basic Boolean Identities

	Identity	Comments
1.	A+0=A	Operations with 0 and 1
2.	A+1=1	Operations with 0 and 1
3.	A+A=A	Idompotent
4.	$A + \overline{A} = 1$	Complementarity
5.	$A \cdot 0 = 0$	Operations with 0 and 1
6.	$A \cdot 1 = A$	Operations with 0 and 1.
7.	$A \cdot A = A$	Idompotent
8.	$A \cdot \overline{A} = 0$	Complementarity
9.	$\overline{A} = A$	Involution
10.	A+B=B+A	Commutative
11.	$A \cdot B = B \cdot A$	Commutative
12.	A + (B + C) = (A + B) + C = A + B + C	Associative
13.	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	Associative
14.	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$	Distributive
15.	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive
16.	$A + (A \cdot B) = A$	Absorption
17.	$A \cdot (A + B) = A$	Absorption
18.	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	Consensus
19.	$\overline{A+B+C+} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot$	De Morgan
20.	$\overline{A \cdot B \cdot C \cdot} = \overline{A} + \overline{B} + \overline{C} +$	De Morgan
21.	$(A + \overline{B}) \cdot B = A \cdot B$	Simplification
22.	$(A \cdot \overline{B}) + B = A + B$	Simplification