National December 2018

16-Mec-A3, SYSTEM ANALYSIS AND CONTROL

3 hours duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use a Casio <u>or</u> Sharp approved calculator. This is a <u>closed book</u> exam. No aids other than semi-log graph papers are permitted.
- 3. Any four (4) questions constitute a complete paper. Only the first four (4) questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Question 1:

Consider the second-order system with the transfer function,

$$G(s) = \frac{3}{(s^2 + 2s - 3)}$$

- a) Determine the DC gain for this system.
- b) What is the final value of the step response of this system?

Question 2:

A typical transfer function for a tape-drive system would be (with time in milliseconds),

$$G(s) = \frac{k(s+4)}{s[(s+0.5)(s+1)(s^2+0.4s+4)]}$$

From Routh's criterion, what is the range of k for which this system is stable if the characteristic equation is 1+G(s)=0?

Question 3:

A unity feedback system has the plant transfer function

$$kG(s) = \frac{k}{s(s^2 + 6s + 12)}$$

We wish to investigate the root locus versus k.

- a) Plot the location of poles and zeros of G(s) showing segments of the root locus on the real axis,
- b) What are the departure angles from the complex poles?
- c) Where are the breakaway and break-in points?
- d) Sketch the root locus,
- e) What is the value of k at the point where the closed -loop complex roots have damping ratio ζ =0.5?

Question 4:

For the unity feedback system with

$$G(s) = \frac{1}{s(s+1)[(s^2/25)+0.4(s/5)+1]}$$

- a) Draw the Bode plots (gain and phase) for G($j\omega$).
- b) Indicate the gain margin when the gain is set for a phase margin of 45°.

Question 5:

a) Using the Laplace transform technique, find the transient and steady-state responses of the system described by the differential equation

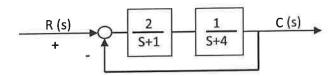
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 1$$

With initial conditions

$$y(0^{+})$$
 and $\frac{dy}{dt}|_{t=0^{+}} = 1$

b) Using the LaPlace transform technique, find the unit impulse response of the system described by the differential equation

$$\frac{d^3y}{dt^3} + \frac{dy}{dt} = x$$


Question 6:

- a) What is the step response of a system whose transfer function has a zero at -1, a pole at -2, and a gain factor of 2?
- b) Determine the time response y(t) for the following transformed equation:

$$Y(S) = \frac{s+4}{s(s+1)(s+2)}$$

Question 7:

Determine the position, velocity and acceleration error constants and then determine the steady-state error to a unit step, a unit ramp, and a unit parabolic input for the system shown below.

Table of Laplace Transforms

f(t)	$\mathcal{L}[f(t)] = F(s)$		f(t)	$\mathcal{L}[f(t)] = F(s)$	
1	1 8	(1)	$\frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$	(19)
$e^{\alpha t} \int (t)$	F(s-a)	(2)	(e ⁿ⁾	$\frac{1}{(s-a)^2}$	(20)
$\mathcal{U}(t-a)$	8	(3)	t ^m e ^{a.t}	$\frac{n!}{(s-a)^{n+1}}$	(21)
$f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$	(4)		***************************************	
$\delta(t)$	1	(5)	e ^{at} sin kt	$\frac{k}{(a-a)^2+k^2}$	(22)
$\delta(t-t_0)$	€uqū	(6)	e ^{al} cos kt	$\frac{s-a}{(s-a)^2+k^2}$	(23)
$t^n f(t)$	$(-1)^n \frac{d^n F(x)}{ds^n}$	(7)	e ^{at} sinh t t	$\frac{k}{(a-a)^2-k^2}$	(24)
f'(t)	aF(s) - f(0)	(8)		, -	
$f^n(t)$	$s^n F(s) = s^{(n-1)} f(0) =$		e ^{at} cosh kt	$\frac{s-a}{(s-a)^2-k^2}$	(25)
	$\cdots f^{\{n-1\}}(0)$	(9)	t sin kt	$\frac{2ka}{(a^2+k^2)^2}$	(26)
$\int_0^t f(x)g(t-x)dx$	F(s)G(s)	(10)	t cos let	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$	(27)
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$	(11)	t sinh kt	$\frac{2ka}{(a^2-k^2)^2}$	(28)
$t^x \ (x \ge -1 \in \mathbb{R})$	$\frac{\Gamma(x+1)}{s^{x+1}}$	(12)	t cosh kt	$\frac{s^2 - k^2}{(s^2 - k^2)^2}$	(29)
sin kt	$\frac{k}{a^2 + k^2}$	(13)	sin at	arctan 4	(30)
cos kt	$\frac{s}{s^2+k^2}$	(14)	$\frac{1}{\sqrt{\pi t}}e^{-a^2/4t}$	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$	(31)
اهم	$\frac{1}{n-a}$	(15)		\sqrt{s} $e^{-a\sqrt{s}}$	(32)
sinh kt	$\frac{k}{s^2-k^2}$	(16)	$\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$		
cosh kt	$\frac{s}{s^2 - k^2}$	(17)	$\operatorname{erfc}\left(rac{a}{2\sqrt{t}} ight)$	$\frac{e^{-a\sqrt{s}}}{s}$	(33)
$\frac{e^{at}-e^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$	(18)			