National Examination - 2016

Discrete Mathematics (04-BS-16)

Duration: 3 hours
Examination Type: Close Book, No aids allowed.

Instructions:

- This exam paper contains 13 pages (including this cover page).
- You have to answer 10 questions out of 12 .
- Clearly indicate which questions you do not want to answer both on the cover page by crossing it and on the corresponding page by drawing a diagonal line across the page.

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	10	10	10	10	10	10	10	10	10	10	10	10	100
Score:													

1. Answer the following questions related to truth of propositions.
(a) 3 points Write the truth table for the compound proposition $p \leftrightarrow(\neg p \wedge q)$. (Note: $\neg p$ is the negation of p.)
(b) 3 points Determine the truth value of " $\exists n \quad n+1>n^{2}$ " where the universe of discourse is all integers.
(c) 4 points Determine whether $\forall x(P(x) \rightarrow Q(x))$ has the same truth value as $\forall x P(x) \rightarrow \forall x Q(x)$.
2. Answer the following questions related to propositions and their relations.
(a) 4 points Prove the following equivalence: $(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$.
(b) 2 points Determine the truth value of the following proposition "If $2>10$ then $\forall x \quad x=x+1$."
(c) 2 points Write the negation of the proposition " $\exists n \quad n+1>n^{2}$ ".
(d) 2 points Find the dual of the proposition $(\neg p \wedge q) \vee \neg r$.
3. Answer the following questions related to set theory.
(a) 2 points If $A=\{1,2,3\}$ and $B=\{1,3\}$, find $A \times B-B \times A$.
(b) 3 points Let A, B and C be sets. Using algebra of sets show that $(A-B)-C^{C}=\left(A-C^{C}\right)-\left(B-C^{C}\right)$.
(c) 5 points Let A, B and C be sets. Can we conclude $A=B$ if $A-C=B-C$ and $C-A=C-B$? If yes, prove it. If no, give a counter example.
4. Answer the following questions related to discrete probability.
(a) 5 points In a class of 60 students 20 are girls and 40 are boys. In a recent test 16 of the girls have passed. Define the following two events. E1: A randomly chosen student from this class is a girl, E2: A randomly chosen student from this class has failed the course. Knowing that E1 and E2 are independent determine the number of boys that passed the test.
(b) 5 points A lamp factory has three production lines A, B and C. Lines A, B and C produce 30%, 50% and 20% of the total respectively. Also, of the outputs of lines A, B and C, $4 \%, 8 \%$ and 3% are defective, respectively. A random lamp from this company is found the be defective. Find the probability that it was produced by line C .
5. Answer the following questions related to functions.
(a) 2 points Determine if $f(n)=\sqrt{n^{3}+n^{2}}$ is a function from \mathbb{Z} to \mathbb{R}.
(b) 2 points Determine if the function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=3 x^{3}+1$ is one-to-one.
(c) 2 points Determine if the function $f: \mathbb{R} \rightarrow \mathbb{Z}$, and $f(x)=\lceil 1.5 x\rceil$ is onto.
(d) 4 points Consider functions f and g both defined from \mathbb{R} to \mathbb{R}. Also $f(x)=x^{2}+1$ and $(f+g)(x)=x^{3}+x^{2}$. Find $\left(g^{-1} \circ f\right)(x)$.
6. This is a question on counting.

Consider the permutations of the letters of the word ASSIGNMENT.
(a) 2 points How many are there in total?
(b) 2 points How many start with A and end with T ?
(c) 2 points How many start with a vowel?
(d) 2 points How many have the block SIGN, with these four letters appearing in this order?
(e) 2 points How many have the three vowels as a block?
7. Answer the following questions on relations.
(a) 4 points Consider the relation R on set of all integers, where $(x, y) \in R$ if and only if $x=y \pm 3$. Determine if R is reflexive, symmetric, antisymmetric and/or transitive.
(b) 3 points For R in part (a), is R^{2} reflexive? Justify your answer.
(c) 3 points How many relations can be defined on the set $A=\{1,2,3,4\}$.
8. This is a question on series and summations.
(a) 5 points Show that the sum of all elements of the set $A=\{2,5,8, \ldots 3 n-1\}$ is $S=\frac{n(3 n+1)}{2}$.
(b) 5 points Let us define $a_{1}=1$ and $a_{i}=a_{i-1}+2 i-1$. Find a_{n} is closed form as a function of n.
9. This is a question on methods of proof.
(a) 5 points Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$.
(b) 5 points Find the flaw in the following "proof" that $a^{n}=1$ for all nonnegative integers n, where a is a nonzero real number.
Basic Step: $a^{0}=1$ is true by definition of a^{0} for $a \neq 0$.
Inductive Step: Assume $a^{j}=1$ for all nonnegative integers j with $j \leq k$. Then note that

$$
a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1 .
$$

10. This is another question on methods of proof.
(a) 5 points Show that at least six of any 36 days must fall on the same day of the week.
(b) 5 points Show that for real numbers x and $y,|x|+|y| \geq|x+y|$.
11. This is a question on growth of functions and complexity of algorithms
(a) 4 points Show that $f(x)=3 x^{7}+x^{5} \log x^{9}+\frac{1}{x}$ is $\Omega\left(x^{7}\right)$.
(b) 6 points Each part is two marks. The time complexity of Algorithms A and B are $\Theta\left(n^{10}\right)$ and $\Theta\left(10^{n}\right)$ respectively. True or false.

- (T F) On a problem with size $n=20$, it is certain that Algorithm B takes a longer time than A.
- (T F) Considering two problems with sizes n and $2 n$, we expect Algorithm A to take about n^{10} times longer on the larger problem.
 longer than A .

12. This is a question on graphs theory.
(a) 5 points The adjacency matrix of graph G (with vertices a, b, c in the same order) is

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

How many paths of length 3 exists between vertices b and c ? How man between a and c ?
(b) 5 points Let $K_{m, n}$ denote the complete bipartite graph with m vertices on one side and n vertices on the other side. For what values of m and n does $K_{m, n}$ have an Euler path?

